
 1

 Department of Information Technology, VIT,Pune

What do we want to achieve?
We want to classify texts into predefined categories which is a very

common task in NLP. For many years, the classical approach for

simple documents was to generate features using TF-IDF and com-

bine it with logistic regression. Formerly we used to rely on this stack

at Sinequa for textual classification, and, spoiler alert, with the model

presented here we have beaten our baseline from 5% to 30% for very

noisy and long documents datasets. This former approach had two

main issues: the feature sparsity that we tackled via compression

techniques and the word-matching issue that we tamed leveraging

Sinequa’s powerful linguistic capacities (mainly through our home-

grown tokenizer).

Later on, the pandora box of language models (pre-trained on hu-

mongous corpora in an unsupervised fashion and fine-tuned on

downstream supervised tasks) was opened and TF-IDF

be word2vec combined with LSTMs or CNNs, ELMo, and most im-

portantly the Transformer (in 2017: https://arxiv.org/

pdf/1706.03762.pdf).

 ‘Classifying Long
 Text Documents
 Using BERT’

 ‘Olympics 2022:
IoT’s Role in
Olympic
Timekeeping’

 March-2022

Bansilal Ramnath Agarwal Charitable Trust's

Vishwakarma Institute of Technology
(An Autonomous Institute affiliated to Savitribai Phule Pune University)

‘Classifying Long Text Documents Using BERT’
 21

st
 Feb 2022

HIGHLIGHTS

Transformer based language models such as BERT are

really good at understanding the semantic context be-

cause they were designed specifically for that purpose.

BERT outperforms all NLP baselines, but as we say in

the scientif ic community, “no free lunch”. How can

we use BERT to classify long text documents?

Department of Information Technology

https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/1706.03762.pdf

 2

 Department of Information Technology, VIT,Pune

based techniques were not state of the art anymore. Such language models could

be word2vec combined with LSTMs or CNNs, ELMo, and most importantly the

Transformer (in 2017: https://arxiv.org/pdf/1706.03762.pdf).

BERT is a Transformer based language model that has gained a lot of momentum in

the last couple of years since it beat all NLP baselines by far and came as a natural

choice to build our text classification.

What is the challenge then?

Transformer based language models such as BERT are really good at understanding the

semantic context (where bag-of-words techniques fail) because they were designed spe-

cifically for that purpose. As explained in the introduction, BERT outperforms all NLP

baselines, but as we say in the scientific community, “no free lunch”. This extensive

semantic comprehension of a model like BERT offers comes with a big caveat: it can-

not deal with very long text sequences. Basically, this limitation is 512 tokens (a token

being a word or a subword of the text) which represent more or less two or three Wik-

ipedia paragraphs and we obviously don’t want to consider only such a small sub-part

of a text to classify it.

To illustrate this, let’s consider the task of classifying comprehensive product reviews

into positive or negative reviews. The first sentences or paragraphs may only contain a

description of the product and it would likely require to go further down the review to

understand whether the reviewer actually likes the product or not. If our model does

not encompass the whole content, it might not be possible to make the right prediction.

Therefore, one requirement for our model is to capture the context of a document while

managing correctly long-time dependencies between the sentences at the beginning and

the end of the document.

Technically speaking, the core limitation is the memory footprint that grows quadrati-

cally with the number of tokens along with the use of pre-trained models that come

with a fixed size determined by Google (& al.).

 'Classifying Long Text Documents Using BERT ’

https://arxiv.org/pdf/1706.03762.pdf

 3

 Department of Information Technology, VIT,Pune

This is expected since each token is “attentive” [https://arxiv.org/pdf/1706.03762.pdf]

to every other token and therefore requires a [N x N] attention matrix, with [N] the

number of tokens. For example, BERT accepts a maximum of 512 tokens which hardly

qualifies as long text. And going beyond 512 tokens rapidly reaches the limits of even

modern GPUs.

Another problem that arises using Transformers in a production environment is the

very slow inference due to the size of the models (110M parameters for BERT base)

and, again, the quadratic cost. So, our goal is not only to find an architecture that fits

into memory during the training but to find one that also responds reasonably fast dur-

ing inference.

The last challenge we address here is to build a model based on various feature types:

long text of course, but also additional textual metadata (such as title, abstract …) and

categories (location, authors …).

So, how to deal with really long documents?

The main idea is to split the document into shorter sequences and feed these sequences

into a BERT model. We obtain the CLS embedding for each sequence and merge the

embeddings. There are a couple of possibilities to perform the merge, we experimented

with:

• Convolutional Neural Networks (CNN)

• Long Short-Term Memory Networks (LSTM)

• Transformers (to aggregate Transformers, yes :))

Our experiments on different standard text classification corpora showed that using ad-

ditional Transformer layers to merge the produced embeddings works best without in-

troducing a large computational cost.

Want the formal description, right?

We consider a text classification task with L labels. For a document D, its tokens given

by the WordPiece tokenization can be written X =(x₁, …, xₙ) with N the total number of

token in D. Let K be the maximal sequence length (up to 512 for BERT). Let I be the

number of sequences of K tokens or less in D, it is given by I=⌊ N/K ⌋.

 'Classifying Long Text Documents Using BERT ’

 4

 Department of Information Technology, VIT,Pune

Note that if the last sequence in the document has a size lower to K it will be padded

with 0 until the Kᵗʰ index. Then if sⁱ with i∈ {1, .., I}, is the i-th sequence

with K elements in D, we have:

We can note that

BERT returns the CLS embedding but also an embedding per token.

Let define the embeddings per token returned by BERT for the i-th sequence of the doc-

ument such as:

where CLS is the embedding of the special token inserted in front of each text sequence

fed to BERT, it is generally considered as an embedding summarizing the full sequence.

To combine the sequences, we only use CLSᵢ and do not use y. We se t transformers T₁,

…,Tₜ to obtain the final vector to feed to the last dense layer of the network:

where . is the function composition operation.

Given the last dense layer weights W € Rᴸˣᴴ where H is the hidden size of the trans-

former and bias b € Rᴸ

The probabilities P ∈ ℝᴸ are given by:

 'Classifying Long Text Documents Using BERT ’

 5

 Department of Information Technology, VIT,Pune

Finally, applying argmax on the vector P returns the predicted label. For a summary of

the above architecture, you can have a look at figure 1.

The architecture above enables us to leverage BERT for the text classification task by-

passing the maximum sequence length limitation of transformers while at the same

time keeping the context over multiple sequences. Let’s see how to combine it with oth-

er types of features.

How to deal with metadata?

Oftentimes, a document comes with more than just its content. There can be metadata

that we divide into two groups, textual metadata, and categorical metadata.

Textual Metadata

By textual metadata, we mean short text that has (after tokenization) a relatively small

number of tokens. This is required to fit entirely into our language model. A typical ex-

ample of such metadata would be titles or abstracts.
 Given a document with M metadata annotation. Let

be the CLS embeddings produced by BERT for each metadata. The same technique as

above is used to get the probability vector as:

Categorical Metadata

Categorical metadata can be a numerical or textual value that represents a category.

Numerical values can be the number of pages whereas textual values can be the pub-

lisher name or a geo-location.

A common way to deal with such features is to implement the Wide and Deep architec-

ture. Our experiments showed that results yielded by the deep part of this network were

sufficiently good and the wide part was not required.

We encode the categorical metadata in a single cross-category vector using one-hot en-

coding. This encoding is then passed into an embedding layer that learns a vector repre-

sentation for each distinct category. The last step is to apply a pooling layer on the

 'Classifying Long Text Documents Using BERT ’

 6

 Department of Information Technology, VIT,Pune

resulting embedding matrix.

We considered max, average and min pooling and found that using average pooling

worked best for our test corpora.

How does the complete architecture look?

Hope you stuck around until now, the following figure will hopefully make things a lot

clearer.

 Figure 1

There are three sub-models, one for text, another for textual metadata, and the last one

for categorical metadata. The output of the three sub-models is merely concatenated

into a single vector before passing it through a dropout layer and finally into the last

dense layer with a softmax activation for the classification.

You probably have noticed that there are multiple BERT instances depicted in the ar-

chitecture, not only for the text input but also for the textual metadata. As BERT comes

with many parameters to train, we decided not to include a separate BERT model per

sub-model, but instead share the weights of a single model in between the sub-models.

Sharing weights certainly reduces the RAM used by the model (enabling training with

larger batch-size, so accelerating training in a sense) but it does not change the inference

-time since there will still be as many BERT executions no matter whether their weights

are shared or not.

 'Classifying Long Text Documents Using BERT ’

 7

 Department of Information Technology, VIT,Pune

What about inference time?

By now, you must have guessed that including that many invocations of the BERT

model do not come for free. And it is true that it is computationally expensive to run

inference of such a model. However, there are a couple of tricks to improve inference

times. In the following, we focus on CPU inference as this is very important in produc-

tion environments.

A couple of notes for the conducted experiments:

• We consider a simplified model only containing a text feature.

• We limited the tokens that we used per document to 25,600 tokens which corre-

spond roughly to around 130,000 characters if the document contains English text.

We perform the experiments with documents that have the above described maximum

length. In practice, documents have varying sizes and as we use dynamic size tensors in

our model, inference times are considerably faster for short documents. As a rule of

thumb, when using a document that is half as long reduces the inference time by 50 %.

 'Classifying Long Text Documents Using BERT ’

 8

 Department of Information Technology, VIT,Pune

References

1 https://arxiv.org/abs/2006.04152, https://arxiv.org/pdf/2001.08950.pdf

2 https://blog.tensorflow.org/2020/04/tfrt-new-tensorflow-runtime.html

3 https://www.tensorflow.org/xla?hl=fr

4 https://medium.com/microsoftazure/accelerate-your-nlp-pipelines-using-hugging-

face-transformers-and-onnx-runtime-2443578f4333

 'Classifying Long Text Documents Using BERT ’

 'Classifying Long Text Documents Using BERT ’

https://arxiv.org/abs/2006.04152
https://arxiv.org/pdf/2001.08950.pdf
https://blog.tensorflow.org/2020/04/tfrt-new-tensorflow-runtime.html
https://www.tensorflow.org/xla?hl=fr
https://medium.com/microsoftazure/accelerate-your-nlp-pipelines-using-hugging-face-transformers-and-onnx-runtime-2443578f4333
https://medium.com/microsoftazure/accelerate-your-nlp-pipelines-using-hugging-face-transformers-and-onnx-runtime-2443578f4333

 9

 Department of Information Technology, VIT,Pune

Long-time Olympic sponsor Omega is once again bringing its technology to he Games

with its latest AI capabilities

Written by Liz Hughes

Timekeeping is vital to the Olympic Games and the 2022 Winter Games is no excep-

tion.

Long-time Olympic sponsor Omega is once again bringing its technology to the Games

with its latest artificial intelligence (AI) capabilities seen from the Olympic beach vol-

leyball courts at the Tokyo summer games to the downhill skiing gates and speed-

skating finish lines in Beijing.

Omega uses motion sensing and positioning technologies to continue to revamp how it

measures what’s happening in each Olympic event. The company unveiled those tech-

nologies at the 2018 Pyeongchang Winter Olympic Games .

By using a combination of image tracking cameras and sensors worn by athletes, Ome-

ga can show the live speed of a bobsled as it races down the course or the live positions

in speedskating, giving everyone from commentators to spectators, athletes and coaches

information to fully analyze each sport in real-time.

Here’s a look at some of the ways Omega is using its technology at the 2022 Olympic

Games:

• Real-Time Tracking System: Omega launched its Real-Time Tracking System

(RTTS) in 2019. Used in track events, the system allows sensor tags fixed to ath-

lete’s start numbers to communicate with the receivers on the track and send in-

formation back to its onsite computers tracking the athlete’s live speed, accelera-

tion, deceleration and distance.

• The Scan‘O’Vision MYRIA: Omega’s Scan‘O’Vision MYRIA photo finish cam-

era can record up to 10,000 images per second. That knowledge arms Olympic

judges for official rankings and times at each event. Omega introduced the system

in Albertville in 1992.

• Snowgate Technology: When alpine skiers break through Omega’s Snowgate,

the timing system is automatically activated ensuring precise timing of each race

with the technology the company introduced at the 2010 Winter Games

 ‘Olympics 2022: IoT’s Role in Olympic Timekeeping’
 8th February 2022

 10

 Department of Information Technology, VIT,Pune

in Vancouver.

• Photoelectric Cells: Speedskating timing is handled by photoelectric cells placed on

the finish line. These little red boxes give off beams of light just two to three centimeters

above the ice. When a competitor skates across it, the clock automatically captures the

finishing time.

The Quantum Timer: Seconds are electronically counted on a Quantum Timer. By of-

fering an enhanced resolution of one-millionth of a second, it’s five times more accurate

than previous versions. Omega debuted this technology at the 2012 London Games.

TOP

 ‘Olympics 2022: IoT’s Role in Olympic Timekeeping’
 8th February 2022

 11

 Department of Information Technology, VIT,Pune

 ‘Key IoT predictions in 2022 – The year enterprises take control’

